CTB-12过电压保护器-HYC1-B电涌保护器
作为在电子产品制造设备里抹黑滚打多年的有限责任公司,福友电器设备一直是以诚实守信、以客户为中心的态度在经营着公司,公司本着“勇于创新、精益求精”的产品原则经营过电压保护器。陕西等地区的客户对我司一直大力支持,我司也抱着感恩的心态在为客户服务。客户对我司的信任是我司能够在电子产品制造设备里坚持这么多年的主要力量。
CTB-12过电压保护器-HYC1-B电涌保护器。
当前随着科技发展,电子产品种类越来越多,应用领域也越来越广广泛。但是这些电子产品耐冲击电压水平一般都低于低压配电装置。
浪涌保护器的设计(1)SPD设计的不足
目前,SPD的设计还存在很多不足的地方,在实际的施工中造成了很多问题,甚至造成工程延期,具体如下:
1)对设计的描述太过简单,意思表达不清晰,安装要求也不够具体,施工时容易造成很多的不确定性,可能会使要被保护的电子设备受到破坏或经济损失。
2)浪涌保护器的设计不够灵活,有时甚至直接套用固定的防雷施工图,没有根据配电系统的接地制式进行针对性的设计,可能会导致SPD在具体接线安装时出现错误。
3)在配电系统图中,SPD的设计参数不够完整,如电压保护水平UP、是否防爆、运行电压UC等重要参数未设计或部分设计,又或者部分参数不准确,造成浪涌保护器实际运行中出现故障或对电子设备的损坏。
4)设计说明书不详细。一般地,要有针对SPD设计进行详细说明的设计说明书,如建设项目概况、设计的依据、是否包含有电子信息系统、SPD设计的防护等级等。
(2)SPD设计的要点
1)SPD设计说明:工程概况、建筑物防雷分类、设计的依据、电子信息系统的雷电防护等级、接地系统、电缆入户的方式、接地电阻的要求等。
2)列表说明SPD的安装的位置、电箱的编号、防护的等级、数量、基本参数(标称放电电流In或冲击电流Iimp、运行电压UC、电压保护水平UP)等
(3)配电系统中SPD的接线形式
低压配电系统的拉地制式有IT、TT、TN-S、TN-C-S四种形式,因此SPD要根据低压配电系统的不同的接地制式而选择不同的接线大样图,例如,当采用TN交流配电系统供电时,从建筑物内总配电箱引出的配电线路就需要采用TN-S的接地制式。
大型风电机通常产生690V的三相交流电。然后电流通过风电机旁的变压器(或在塔内),电压被提高至数千伏。
风电机结构大致包括以下几部分:
机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。
转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,
而且被设计得很象飞机的机翼。
轴心:转子轴心附着在风电机的低速轴上。
低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代风电机上,转子转速相当慢,
大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。
齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。
高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,
用于空气动力闸失效时,或风电机被维修时。
发电机:通常被称为感应电机或异步发电机。在现代风电机上,电力输出通常为500至1500千瓦。
偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,
电子控制器可以通过风向标来感觉风向。通常,在风改变其方向时,风电机一次只会偏转几度。
电子控制器:包含一台不断监控风电机状态的计算机,并控制偏航装置。
为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,
并通过电话调制解调器来呼叫风电机操作员。
液压系统:用于重置风电机的空气动力闸。
冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。
CTB-12过电压保护器-HYC1-B电涌保护器。
由于汽车环境的多变以及要给各种精密电子设备供电,CLAs(汽车点烟器电源适配器)必须要在很宽的温度范围和充电条件下工作。所以,CLAs经常出现短路故障以及保险丝烧毁的情形。通常,这些情形是由过电流、充电器电路故障或反向充电所引起。
在CLA输入端接入过电流保护装置,可以防止此类故障以及可能导致的损坏。这种装置的具体保护要求是由终端设备的负载电流,以及CLA电源转换电路的故障敏感性决定。通常是在CLA的输入端,应用过电压保护器件,如瞬时限压二极管提供过电压保护;结合自复式保护元件,如PPTC元件,即可提供一个“一插即可”的解决方案,对电路进行保护从而减少质保返修。
图3 典型的CLA电路
图3中是一个PolySwich自复元件和一个瞬时限压(TVS)二极管提供输入保护。IC用于控制DC/DC降压转换,由PPTC独用或与TVS相结合的保护措施可以防止以下四种故障造成的损坏。负载过流:故障的车载电话导致过大的电流,会使PPTC动作跳变至高阻状态,直至故障排除。
转换器发生故障时的汽车电路保护:如果转换器或控制IC失效,短路电流会使PPTC动作跳变至高阻状态,以保护汽车的线束及保险丝。
发动机启动瞬间:发动机启动时,发电机会产生瞬时峰值电压,该电压通常会被TVS二极管抑制。然而,如果瞬时电压值过大,可能会超过TVS二极管的承受能力。而如果使用了PPTC,就可以在过量电流损坏TVS以前动作并限流,从而起到保护TVS的作用。
极性倒置:如果使用了不正确的汽车电池,TVS二极管将会正向导通,过大电流通过PPTC导致其动作跳变至高阻状态,从而保护TVS,并将流过转换器的反向电压限制在TVS正向电压降水平下。
雷电现象是带异性电荷的雷云间或是带电荷雷云与大地间的放电现象。风电机组遭受雷击的过程实际上就是带电雷云与风电机组间的放电。在所有雷击放电形式中,雷云对大地的正极性放电或大地对雷云的负极性放电具有较大的电流和较高的能量。雷击保护关注的是每一次雷击放电的电流波形和雷电参数。雷电参数包括峰值电流、转移电荷及电流陡度等。风电机组遭受雷击损坏的机理与这些参数密切相关。
峰值电流
当雷电流流过被击物时,会导致被击物温度的升高,风电机组叶片的损坏在很多情况下与此热效应有关。热效应从根本上来说与雷击放电所包含的能量有关,其中峰值电流起到很大的作用。当雷电流流过被击物时(如叶片中的导体)还可能产生很大的电磁力,电磁力的作用也有可能使其弯曲甚至断裂。另外,雷电流通道中可能出现电弧。电弧产生的膨胀过压与雷电流波形有关,其燃弧过程中的强烈高温将对被击物产生的破坏。这也是导致许多风电机叶片损坏的主要原因。
转移电荷
物体遭受雷击时,大多数的电荷转移都发生在持续时间较长而幅值相对较低的雷电流过程中。这些持续时间较长的电流将在被击物表面产生局部金属熔化和灼蚀斑点。在雷电流路径上一旦形成电弧就会在发生电弧的地方出现灼蚀斑点,如果雷电流足够大还可能导致金属熔化。这是威胁风电机组轴承一个潜在因素,因为在轴承的接触面上非常容易产生电弧,它就有可能将轴承熔焊在一起。即使不出现轴承熔焊现象,轴承中的灼蚀斑点也会加速其磨损,降低其使用寿命。
福友电器设备实力强大,能周全的为广大所需群体提供技术支持和售后服务。以技术为基础,结合科学管理来发现问题、解决问题、预防问题。可靠化的服务保证您在购置过电压保护器后能快速收到产品,一般在双方协商的时间内及时发货。公司本着“精益求精,勤奋实干,优异产品,高能服务”的原则,为客户提供可靠化产品和服务。
福友电器设备真抓实干,百折不挠,打造,矢志不移。凭借对市场的灵敏嗅觉以及高质量的产品,致力为所需群体提供更丰富、更可靠、更的过电压保护器和服务。系统规范的服务和稳健的经营模式,使公司在电子产品制造设备行业领域中占有的地位。如果您对本公司的产品有兴趣的,欢迎您莅临本公司参观,希望与您达成合作,实现共赢。公司地址:长安北路58号西安宾馆商务配套楼四楼B11号房
想了解有关CTB-12过电压保护器,HYC1-D电涌保护器,HYC1-B电涌保护器,过电压保护器的更多信息可以来电访问,我们可满足您所需