手机版 网站导航

会员注册 会员登录 会员中心 忘记密码

硬件电路时序计算方法与应用实例

时间:2015-05-23 00:04:12 来源:TC104 阅读量:85


  2 时序分析中的关键参数
  为了进行时序分析,需要从datasheet(芯片手册)中提取以下关键参数:
  ● Freq:时钟频率,该参数取决于对芯片工作速率的要求。
  ● Tcycle:时钟周期,根据时钟频率Freq的倒数求得。Tcycle=1/Freq。
  ● Tco:时钟到数据输出的延时。上文提到,输入数据需要采用时钟采样,而输出数据同样也需要参考时钟,不过一般而言,相比时钟,输出的数据需要在芯片内延迟一段时间,这个时间就称为Tco。该参数取决于芯片制造工艺。
  ● Tsetup(min):最小输入建立时间要求。
  ● Thold(min):最小输入保持时间要求。
  除以上五个参数外,时序分析中还需要如下经验参数:
  ● Vsig:信号传输速度。信号在电路上传输,传输速度约为6英寸/纳秒。
  时序计算的目标是得到以下两个参数之间的关系:
  ● Tflight-data:数据信号在电路板上的走线延时。
  ● Tflight-clk:时钟信号在电路板上的走线延时。
  以上参数是进行时序分析的关键参数,对于普通的时序分析已经足够。
  3 源同步系统的时序计算
  源同步系统指数据和时钟是由同一个器件驱动发出的情况,下图是常见的源同步系统拓扑结构:
  该系统的特点是,时钟和数据均由发送端器件发出,在接收端,利用接收到的时钟信号CLK采样输入数据信号DATA。
  源同步系统的时序计算公式为[1]:
  TCO(max) + (Tflight-data - Tflight-clk)MAX + Tsetup(min) < Tcycle (式1)
  TCO(min) + (Tflight-data - T flight-clk)MIN > Thold(min) (式2)
  时序计算的最终目标是获得Tflight-data - T flight-clk的允许区间,再基于该区间,通过Vsig参数,推算出时钟信号和数据信号的走线长度关系。
  4 SPI4.2接口时序分析
  SPI4.2[2](SystemPacketInterfaceLevel4, Phase 2)接口是国际组织OIF制定的针对OC192(10Gbps)速率的接口。目前广泛应用在高速芯片上,作为物理层芯片和链路层芯片之间的接口。SPI4.2的接口定义如下:
  SPI4.2接口信号按照收、发方向分为两组,如图3中,以T开头的发送信号组和以R开头的接收信号组。每组又分为两类,以发送信号组为例,有数据类和状态类,其中数据类包含TDCLK、TDAT[15:0],TCTL,状态类包含TSCLK,TSTAT[1:0]。


  其中,状态类信号是单端LVTTL信号,接收端利用TSCLK的上升沿对TSTAT[1:0]采样,方向为从物理层芯片发往链路层芯片;数据类信号是差分LVDS信号,接收端利用TDCLK的上升沿与下降沿对TDAT[15:0]和TCTL采样,即一个时钟周期进行两次采样,方向为从链路层芯片发往物理层芯片。
  本文引用地址:http://www.eepw.com.cn/article/266060.htm
  由于接收信号组与发送信号组的时序分析类似,因此本文仅对发送信号组进行时序分析。
  在本设计中,采用Vitesee公司的VSC9128作为链路层芯片,VSC7323作为物理层芯片,以下参数分别从这两个芯片的Datasheet中提取出来。
  ● 状态类信号的时序分析
  对状态类信号,信号的流向是从物理层芯片发送到链路层芯片。
  第一步,确定信号工作频率,对状态类信号,本设计设定其工作频率和时钟周期为:
  Freq=78.125MHz;
  Tcycle = 1/ Freq = 12.8ns;
  第二步,从发送端,即物理层芯片手册提取以下参数[3]:
  -1ns < Tco < 2.5ns;
  第三步,从接收端,即链路层芯片手册提取建立时间和保持时间的要求[4]:
  Tsetup(min) = 2ns;
  Thold(min) = 0.5ns;
  将以上数据代入式1和式2:
  2.5ns + (Tflight-data - T flight-clk)MAX + 2ns < 12.8ns
  -1ns + (Tflight-data - T flight-clk)MIN > 0.5ns 整理得到:
  1.5ns < (Tflight-data - T flight-clk) < 8.3ns
  基于以上结论,同时考虑到Vsig = 6inch/ns,可以得到如下结论,当数据信号和时钟信号走线长度关系满足以下关系时,状态类信号的时序要求将得到满足:TSTAT信号走线长度比TSCLK长9英寸,但最多不能超过49.8英寸。
  ● 数据类信号的时序分析
  对数据类信号,信号的流向是从链路层芯片发送到物理层芯片。
  第一步,确定信号工作频率,对数据类信号,本设计设定其工作频率为:
  Freq=414.72MHz;
  与状态类信号不同的是,数据类信号是双边沿采样,即,一个时钟周期对应两次采样,因此采样周期为时钟周期的一半。采样周期计算方法为:
  Tsample = ?*Tcycle = 1.2ns;
  第二步,从发送端,即链路层芯片手册提取以下参数[4]:
  -0.28ns < Tco < 0.28ns;
  第三步,从接收端,即物理层芯片资料可以提取如下需求[3]:
  Tsetup(min) = 0.17ns;
  Thold(min) = 0.21ns;
  将以上数据代入式1和式2,需特别注意的是,对数据类信号,由于是双边沿采样,应采用Tsample代替式1中的Tcycle:
  0.28ns + (Tflight-data - T flight-clk)MAX + 0.17ns < 1.2ns
  -0.28ns + (Tflight-data - T flight-clk)MIN > 0.21ns
  整理得到:
  0.49ns < (Tflight-data - T flight-clk) < 0.75ns
  基于以上结论,同时考虑到Vsig = 6inch/ns,可以得到如下结论,当数据信号和时钟信号走线长度关系满足以下关系时,数据类信号的时序要求将得到满足:TDAT、TCTL信号走线长度比TDCLK长2.94英寸,但最多不能超过4.5英寸。
  5 结论
  高速电路中的时序设计,虽然看似复杂,然而只要明晰其分析方法,问题可以迎刃而解。
  参考文献:
  [1] 王剑宇. 高速电路设计实践[M].电子工业出版社,2010:131
  [2]OpticalInternetworking Forum. Implementation Agreement: OIF-SPI4-02.0[J]. OIF,2002:1-5
  [3] Vitesse. VSC7323 Datasheet[J]. Vitesse,2006: 306~312
  [4] Vitesse. VSC9125 and VSC9128 Datasheet[J]. Vitesse,2006:769-772

1 2 3 4 5 6
原材料 工业品 服装服饰 家居百货 小商品 商务服务 更多分类

·天津男女同款职业装订制一般多少钱2025-02-23

·安宁工地板房空调租赁服务2025-02-23

·嘉峪关软启动柜多少钱2025-02-23

·临夏工地配电柜生产2025-02-23

·四川纤维食品输送带生产厂家2025-02-23

·武威组合型成套箱式变电站生产2025-02-23

·酒泉电气配电柜生产2025-02-23

最新资讯

全新移动平台,手机放心采购

手机书生商务网:http://m.dingdanmao.com
书生官方微博:新浪、腾讯